摘要

Based on the theories of tissue optics and artificial neural network, the relationship between the optical properties and biological parameters was studied, and a new experimental method was derived. The properties of the organism were obtained indirectly by a black-box model derived by self-study of the artificial neural network between optical parameters and thermo-physical properties without using the heat transfer equation. In this method, the energy of light in diffuse radiation, diffuse transmission and collimated transmission was absorbed by a dual-integrating sphere experimental system of a spectrometer, and the spectrogram of the energy was obtained. Combining these spectral data of the energy, the diffuse-reflecting power, the diffuse transmissivity and the collimated transmissivity were calculated. The calculated results were taken as the input parameters of a black-box model. The experimental results show that there are apparent differences between the spectrogram of the energy on the diffuse radiation, the diffuse transmission and the collimated transmission of different matters, while there is a little difference in the same matter. Each spectrogram has its own characteristic. The values of the four thermal properties including the density, the constant pressure specific heat, the thermal diffusivity and the viscosity were calculated using the black-box model. Compared with the real values the calculated one has an average relative error between -5% and 5%. The conductivity of the tongue is 0.68 W/(m K) that calculated from the value of the density, the constant pressure specific heat and the thermal diffusivity. The results also show that there is a little difference on the conductivities in the longitudinal cross-section and the transverse section, but the effect of temperature on the conductivity of the tongue is not apparent. The difference implies the anisotropy of the properties of the organism, which cannot be easily obtained by a conventional experimental method.

全文