Deep structure and metallogeny of the Kirovograd polymetallic ore district, the Ukrainian Shield: Correlation of geological and seismic data

作者:Kazansky V I*; Makivchuk O F; Popov N I; Drogitskaya G M; Starostenko V I; Tripol'sky A A; Chicherov M V
来源:Geology of Ore Deposits, 2012, 54(1): 17-40.
DOI:10.1134/S1075701512010047

摘要

The study of deep structure of the Kirovograd ore district proceeds from a broad treatment of its geological boundaries and combination of metasomatic uranium, pegmatitic lithium, and hydrothermal gold deposits, as well as lodes of magmatic titanium ore within these boundaries. The spatial juxtaposition of the Novoukrainsk-Kirovograd granitoid massif and the Korsun-Novomirgorod rapakivi granite-anorthosite massif is a distinguishing feature of the Kirovograd ore district. The former massif along with stratified metamorphic rocks forms an intrusive-ultrametamorphic basement, whereas the latter massif is autonomous with respect to the basement. Taken together, both massifs make up the Novoukrainsk-Korsun-Novomirgorod composite pluton, which determines the architecture of the Kirovograd ore district not only at the present-day erosion surface but also at deeper levels of the lithosphere. The uranium, lithium, and gold deposits are localized in the intrusive-ultrametamorphic basement and controlled by various combinations of intrinsic and superposed structures; the vertical extent of mineralization is also controlled by their combinations. Some combinations are unique. Primarily, these are triple junctions of superposed faults, which host the largest metasomatic uranium orebodies. At the same time, the deposits are spatially related to the local mediumscale trough in topography of the Moho discontinuity. This mantle trench is discordant relative to the Novoukrainsk-Korsun-Novomirgorod pluton. These and other data discussed in the paper allow us to consider the Kirovograd polymetallic ore district as a Paleoproterozoic center of crustal-mantle magmatic activity and ore formation. This center was formed 2.1-1.7 Ga ago in the course of juxtaposition of three development stages differing in associations of intrusive rocks, style of deformation and metamorphism of rocks, origin and localization of ore deposits.

  • 出版日期2012-2

全文