摘要

In this paper, an adaptive actuator failure compensation scheme is proposed for a class of parametric-strict-feedback multi- input multi-output nonlinear systems with unknown time- varying state delays. The considered actuator failures are types of loss of effectiveness, in which unknown system inputs may lose unknown fraction of their effectiveness. The adaptive compensation controller is constructed by utilizing a backstepping design method. The appropriate Lyapunov-Krasovskii functionals are introduced to design new adaptive laws to compensate the unknown actuator failures as well as uncertainties from unknown parameters and state delays. The boundedness of all the closed-loop signals is guaranteed, and the tracking errors are proved to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.

  • 出版日期2015-1