Artificial Transcription Factors Based on Multi-zinc Finger Motifs

作者:Morisaki Tatsuya*; Imanishi Miki; Futaki Shiroh; Sugiura Yukio
来源:Journal of the Pharmaceutical Society of Japan, 2010, 130(1): 45-48.

摘要

Artificial transcription factors targeting any desired genes are very attractive from the standpoint of regulating biological functions for life science studies and clinical applications. In order to generate such transcription factors, specific DNA binding domains are required to address a single site for each gene promoter. C2H2 type zinc finger motif is one of the best frameworks to create new artificial DNA binding proteins for the following features: the zinc finger motif can recognize three bases DNA, be tandemly repeated by covalent linkage, and work as a monomer. Taking advantage of these features, manifold zinc finger proteins targeting various DNA sequences have been created so far. For application to a target in sequences as complex as the human genome, the significantly strict specificity in DNA binding must be required. Conjugating multiple fingers (multi-zinc fingers) enables to recognize longer sequences which are sufficient for addressing a single site in the human genome, whereas it has become known that as the number of finger motifs increases, the equilibrium time with the target sequence is significantly longer by in vitro experiments. Our recent study showed that the multi-zinc finger type artificial transcription factor could activate the reporter gene promptly. There is much interest in creating gene regulators, and the artificial transcription factors based on multi-zinc finger motifs could be a superior scaffold.

  • 出版日期2010-1