摘要

Chinese sturgeon (Acipenser sinensis) is a protected anadromous fish species. The migration pattern of the fish has been blocked by the construction of Gezhouba Dam, reducing the natural spawning site length to less than 7 km along the Yangtze River. However, the fish has since established an alternative spawning ground in the narrow reach downstream of Gezhouba Dam. To enhance navigation, a Separation Levee Project (SLP) was implemented in the new-found spawning habitat of the fish. To therefore evaluate the effect of the SLP on Chinese sturgeon spawning habitat suitability, the conditions in the spawning habitat were simulated using River2D (a two-dimensional hydrodynamic model). Two main approaches (habitat kinetic energy and circulation metrics) were used in the simulation. The study showed that SLP only slightly changed the physical conditions in the spawning habitat. Using hydrodynamic simulation, the weighted usable area (WUA) before and after the SLP construction was also computed and habitat preference curve developed for water depth and velocity. On the average, SLP reduced WUA-a finding that was consistent with field-measured data. Based on WUA, the habitat conditions were more sensitive to SLP proximity than metrics based on velocity gradients. SLP posed detrimental impacts on the suitability of spawning habitats of Chinese sturgeon. The findings in this study provide further basis for the protection and restoration of Chinese sturgeon spawning habitats in especially the lower reach of Yangtze River.