摘要

The present study describes the petrographic and petrophysical characteristics of three stratigraphically asynchronous beachrocks (A, B, and C) along the Red Sea coast at Al-Shoaiba area, Saudi Arabia, to identify the compositional, depositional, and diagenetic controls on beachrock formation and their petrophysical properties. The beachrocks at the three locations consist basically of calcareous skeletal remains of different types and grain size reflecting the composition of adjacent beach sediments and the depositional conditions. They were cemented by aragonite and high-Mg calcite (HMC) in intertidal zone. The cement exhibits three major fabrics: (1) micritic coatings, (2) isopachous to asymmetric aragonite rim, and (3) cryptocrystalline pore-fillings HMC. In addition, some intergranular and intragranular pores were partially filled with infiltrated silt-sized carbonate and siliciclastic sediments. The cementation was accomplished by the combination of inorganic and organic processes, and the former was dominant through evaporation of pore-filling seawater under hot and dry climatic conditions. Cementation in the present beachrocks is selective; carbonate grains are cemented, whereas siliciclastic grains are cement free. The cement nucleation on carbonate grains was easier than on siliciclastic grains which do not provide good "seed crystals" for carbonate cement growth. The petrophysical measurements are in agreement with petrographic studies. The degree of cementation is the major control on petrophysical characteristics where the lowest and highest porosity and permeability values were obtained from the least cemented beachrocks of location A and the highest cemented beachrocks of location B, respectively. The thickness of cement seems to be controlled by cement precipitation rate, grain size, and size and shape of pore spaces. The coarse sediments of beachrocks at location B were deposited under higher depositional energy than those at locations A and C, and therefore, their primary pore spaces were large enough to be filled with seawaters. Under hot and dry climate, cement precipitation increases leading to partial to complete occlusion of pore spaces.

  • 出版日期2014-1

全文