Multi-year ozone concentration and its spectra in Shanghai, China

作者:Geng, Fuhai; Mao, Xiaoqin; Zhou, Mingyu*; Zhong, Shiyuan; Lenschow, Donald
来源:Science of the Total Environment, 2015, 521: 135-143.
DOI:10.1016/j.scitotenv.2015.03.082

摘要

The periodic properties of surface ozone variation were studied at five stations with different environmental conditions in Shanghai based on multi-year observations of ozone concentration and UV radiation using spectral decomposition methods. The spectra of surface ozone have distinct peaks at semi-diurnal, diurnal, intraseasonal, semiannual, annual, and quasi-biennial periods. The spectra for the frequency band larger than the semi-diurnal follow a -5/3 power law at all the stations. The diurnal peak values for all stations in different years are similar to each other, while the semi-diurnal peak values are somewhat different among the stations. The peak value of semi-diurnal cycle at the station Dongtan (ecological environment area) is smaller than that at the other stations. The monthly mean of surface ozone has a significant seasonal variation with a maximum in May, a secondary maximum in fall, a lower value in summer (July and August), and a minimum in December or January. However the seasonal variation of UV radiation monthly mean shows a relatively higher value in summer (July and August), and for other months it is closely related to the ozone monthly mean. These secondary peaks of the ozone monthly mean in fall might be caused by the UV radiation coming back to its relevant value after falling off during the Asia summer monsoon; it was not related to biomass burning. The intraseasonal cycling of ozone might be related to the MJO (Madden-Julian Oscillation). Further studies are needed to understand the relationship between the local ozone intraseasonal variation and the MJO. The quasi-biennial variation of ozone in Shanghai might be a local reflection of climate change and could be associated with ENSO (El-Nino Southern Oscillation). Further studies will be needed to understand the relationship of the quasi-biennial variation of ozone to ENSO.