摘要

By developing a multiple-scale method, we study analytically the dynamics of the soliton inside the semi-infinite band gap (SIBG) of quasi-one-dimensional Bose-Einstein condensates trapped in an optical lattice. In the linear case, a stable condition of soliton formation is obtained. For a weak nonlinearity, whether there occurs a spatially propagating or localized gap soliton is determined by the lattice depth. Meanwhile, we predict the existence of the dark (bright) gap solitons for the repulsive (attractive) interactions in the SIBG, different from that of the gap solitons in other energy gaps. And the collision of two dark (or bright) solitons is nearly elastic under a safe range of atomic numbers. An experimental protocol is further designed for observing these phenomena.