摘要

The evolution of the shore-normal profile shape of accreting tidal flats is controlled mainly by tidally induced mud and sand transport. To understand the evolution processes, a model is developed to simulate the tidal flat profile changes in response to spring-neap tidal cycles. The model treats both sand and mud transport patterns over the tidal flats and adopts an algorithm to deal with the areas near the high water (HW) level on springs. The model is applied to an accreting tidal flat on the central Jiangsu coast, to investigate the relationship between the equilibrium profile shape of the tidal flat and the various influencing factors (e.g. initial profile shape of tidal flat, tidal range and sediment supply). Based on the modeling results the following conclusions are derived: (1) the accreting tidal flat tends to be convex in profile shape when it reaches an equilibrium state; (2) sediment supply is a key factor affecting the width and accretion-erosion status of the tidal flat; (3) filling the area close to high water (HW) on spring tides is essential for reproducing the shape evolution and the morphodynamic behavior of tidal flats; (4) after an equilibrium shape is formed, a tidal flat with abundant sediment supply can steadily prograde to seaward, at the same time maintaining the equilibrium shape; and (5) the modeled width and the slope of the tidal flat are consistent with those of the central Jiangsu coast when the parameters adopted in the model are appropriate for the local conditions.