摘要

Glutathione is a ubiquitous thiol in eukaryotic cells, and its high intracellular ratio of reduced form (GSH) to oxidized form (GSSG) is largely maintained by glutathione reductase (GR) using NADPH as electron donor. glrA, a glutathione reductase encoding gene, was found and cloned from Acremonium chrysogenum by searching its genomic sequence based on similarity. Its deduced protein exhibits high similarity to GRs of other eukaryotic organisms. Disruption of glrA resulted in lack of GR activity and accumulation of a high level of GSSG in A. chrysogenum. Overexpression of glrA dramatically enhanced GR activity and the ratio of GSH/GSSG in this fungus. The spore germination and hyphal growth of glrA disruption mutant was strongly reduced in chemical defined medium. Meanwhile, the mutant was more sensitive to hydrogen peroxide than the wild-type strain. We found that the glrA mutant recovered normal germination and growth by adding exogenous methionine (Met). Exogenous Met also enhanced the antioxidative ability of both the mutant and wild-type strain. GSH determination indicated that the total GSH and ratio of GSH/GSSG in the mutant or wild-type strain were significantly increased when addition of Met into the medium. The glrA mutant grew poorly and could not produce detectable cephalosporin in the fermentation medium without Met. However, its growth and cephalosporin production was restored with addition of exogenous Met. These results indicate that glrA is required for the normal growth and protection against oxidative damage in A. chrysogenum, and its absence can be complemented by exogenous Met.

全文