Microenvironment in the corona region of triblock copolymer micelles: Temperature dependent solvation and rotational relaxation dynamics of coumarin dyes

作者:Kumbhakar Manoj*; Goel Teena; Nath Sukhendu; Mukherjee Tulsi; Pal Haridas
来源:Journal of Physical Chemistry B, 2006, 110(51): 25646-25655.
DOI:10.1021/jp063839v

摘要

Dynamic Stokes' shift and fluorescence anisotropy measurements using coumarin-153 (C153) and coumarin-151 (C151) as the fluorescence probes have been carried out in aqueous poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)(20) (P123) and poly(ethylene oxide)(100)-poly(propylene oxide)(70)-poly(ethylene oxide)(100) (F127) block copolymer micelles with an aim to understand the water structures and dynamics in the micellar corona region. It has been established that the probes reside in the micellar corona region. It is indicated that the corona regions of P123 and F127 micelles are relatively less hydrated than the Palisade layers of neutral micelles like Triton-X-100 and Brij-35. From the appraisal of total Stokes' shift values for the probes in the two block copolymer micelles, it is inferred that the F127 micelle is more hydrated than the P123 micelle. It is observed that the dynamic Stokes' shift values for both of the probes remain more or less similar at all the temperatures studied in the P123 micelle. For C153 in F127, however, the observed Stokes' shift is seen to decrease quite sharply with temperature, though it remains quite similar for C151. Moreover, the fraction of the unobserved initial dynamic Stokes' shift is appreciably higher for both the probes in the F127 micelle compared to that in P123. Over the studied temperature range of 293-313 K, the spectral shift correlation function is described adequately by a bi-exponential function. Rotational relaxation times for C153 in both the micelles show a kind of transition at around 303 K. These results have been rationalized assuming collapse of the poly(ethylene oxide) (PEO) blocks and formation of water clusters in the corona region due to dehydration of poly(ethylene oxide) blocks with an increase in temperature. A dissimilar probe location has been inferred for the differences in the results with C153 and C151 probes in F127. Comparison of the microviscosity and the hydration of the block copolymer micelles has also been made with those of the other commonly used neutral micelles, for a better understanding of the results in the block copolymer micelles.

  • 出版日期2006-12-28