摘要

Background: Renin is the rate limiting step for the activation of the renin-angiotensin-aldosterone system, which is linked to the development of endothelial dysfunction, hypertension and atherosclerosis. However, the specific role of renin during physiological responses to tissue ischemia is currently unknown. Aliskiren is the only direct renin inhibitor that is clinically used as an orally active antihypertensive drug. Here we tested the hypothesis that aliskiren might improve neovascularization in response to ischemia. Methods and results: At a dose that did not modulate blood pressure (10 mg/kg), aliskiren led to improved blood flow recovery after hindlimb ischemia in C57BL/6 mice (Doppler flow ratios 0.71 +/- 0.07 vs. 0.55 +/- 0.03; P < 0.05). In ischemic muscles, treatment with aliskiren was associated with a significant increase of vascular density, reduced oxidative stress levels and increased expression of VEGF and eNOS. Aliskiren treatment also significantly increased the number of bone marrow-derived endothelial progenitor cells (EPCs) after hindlimb ischemia. Moreover, the angiogenic properties of EPCs (migration, adhesion, integration into tubules) were significantly improved in mice treated with aliskiren. In vitro, aliskiren improves cellular migration and tubule formation in HUVECs. This is associated with an increased expression of nitric oxide (NO), and a significant reduction of oxidative stress levels. Importantly, the angiogenic properties of aliskiren in vitro and in vivo are completely abolished following treatment with the NOS inhibitor L-NAME. Conclusion: Direct renin inhibition with aliskiren leads to improved ischemia-induced neovascularization that is not dependant on blood pressure lowering. The mechanism involves beneficial effects of aliskiren on oxidative stress and NO angiogenic pathway, together with an increase in the number and the functional activities of EPCs.

  • 出版日期2015-10

全文