A study on orientation and absorption spectrum of interfacial molecules by using continuum model

作者:Ma Jian Yi; Wang Jing Bo; Li Xiang Yuan*; Huang Yao; Zhu Quan; Fu Ke Xiang
来源:Journal of Computational Chemistry, 2008, 29(2): 198-210.
DOI:10.1002/.jcc.20773

摘要

In this work, a numerical procedure based on the continuum model is developed and applied to the solvation energy for ground state and the spectral shift against the position and the orientation of the interfacial molecule. The interface is described as a sharp boundary separating two bulk media. The polarizable continuum model (PCM) allows us to account for both electrostatic and nonelectrostatic solute-solvent interactions when we calculate the solvation energy. In this work we extend PCM to the interfacial system and the information about the position and orientation of the interfacial molecule can be obtained. Based on the developed expression of the electrostatic free energy of a nonequilibrium state, the numerical procedure has been implemented and used to deal with a series of test molecules. The time-dependent density functional theory (TDDFT) associated with PCM is used for the electron structure and the spectroscopy calculations of the test molecules in homogeneous solvents. With the charge distribution of the ground and excited states, the position- and orientation-dependencies of the solvation energy and the spectrum have been investigated for the interfacial systems, taking the electrostatic interaction, the cavitation energy, and the dispersion-repulsion interaction into account. The cavitation energy is paid particular attention, since the interface portion cut off by the occupation of the interfacial molecule contributes an extra part to the stabilization for the interfacial system. The embedding depth, the favorable orientational angle, and the spectral shift for the interfacial molecule have been investigated in detail. From the solvation energy calculations, an explanation has been given on why the interfacial molecule, even if symmetrical in structure, tends to take a tilting manner, rather than perpendicular to the interface.