摘要

Orthogonal frequency-division multiplexing (OFDM) systems are the major cellular platforms for supporting ubiquitous high-speed mobile applications. However, a number of research challenges remain to be tackled. One of the most important challenges is the design of a judicious packet scheduler that will make efficient use of the spectrum bandwidth. Due to the multicarrier nature of the OFDM systems, the applicability and performance of traditional wireless packet-scheduling algorithms, which are usually designed for single-carrier systems, are largely unknown. In this paper, we propose a new quality-of-service (QoS)-aware proportional fairness (QPF) packet-scheduling policy with low complexity for the downlink of multiuser OFDM systems to allocate radio resources among users. Our proposed algorithm is based on a cross-layer design in that the scheduler is aware of both the channel (i.e., physical layer) and the queue state (i.e., data link layer) information to achieve proportional fairness while maximizing each user;s packet-level QoS performance. The simulation results show that the proposed QPF algorithm is efficient in terms of average system throughput, packet-dropping probability, and packet delay, while maintaining adequate fairness among users with relatively low scheduling overhead.