摘要

Orthogonal frequency-division multiplexing (OFDM) has lately gained a great deal of attention and is considered as a strong candidate for many next-generation wireless communication systems. However, OFDM is very sensitive to nonlinear effects due to the high peak-to-average power ratio (PAPR) owned by the transmitted signals and does not show robustness to spectral null channels. This paper proposes a novel BPSK OFDM system based on Haar wavelet transformation. The Haar wavelet transformation operates decomposition over the data symbol sequence after binary-to-complex mapping shows that half of the data symbols are zeros and the rest are either or . Then, we have the PAPR reduced by dB at most, compared with the conventional OFDM system. We also propose a novel decoding algorithm for the proposed OFDM system to show robustness to spectral null channels, and derive the bit error rate (BER) performance in theory from unbalanced QPSK modulation. Finally, we compare BER performance of our proposed OFDM with the conventional OFDM over different channels to show the excellent performance of our proposed OFDM system.

全文